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ABSTRACT

The predictability of wind and virtual temperature profiles from the surface to

30 km for 0- to 72-hr forecast intervals has been evaluated. Meaningful forecast

verification criteria were established for each of four NASA operational problem areas

affected by winds and virtual temperatures: (a) launch and flight of an aero-space

vehicle, (b) propagation of sound from missile firings (both static and real), (c) diffusion

of toxic fields, and (d) design of missiles. Predictions of wind and virtual temperature

profiles prepared by various methods were evaluated by the criteria established for the

four problem areas. It was concluded that the state of the art was deficient in several

areas of profile predictions considering the user's requirements. A Technique

Development Plan was designed to guide the development of new prediction techniques

and to tailor existing techniques specifically to meet the National Aeronautics Space

Administration/Marshall Space Flight Center operational requirements.
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I. INTRODUCTION

This report describes the results of a survey of the present state of the art for

predicting wind and virtual temperature profiles, for periods up to 72 hours, from the

surface to 30 km. The quality of the prediction techniques was evaluated with the

primary objective of determining how well each technique satisfies various National

Aeronautics & Space Administration/Marshall Space Flight Center (NASA/MSFC)

operational requirements. Consultation with NASA/MSFC and The Travelers

Research Center, Inc. (TRC) experts in the fields of aerospace vehicle launch and

design, sound propagation, and diffusion of toxic fuels, provided the required informa-

tion as to what aspects of the profile predictions are important to each operation.

Section II of this report describes the results of the evaluation of the profile

prediction techniques--both the directly available profile forecasts, and those that

may be derived from information at constant pressure surfaces. These results are

summarized in Section III. Section IV consists of a Technique Development Plan

designed to advance the state of the art of profile predictions (specifically for NASA/

MSFC operations) where the evaluation has indicated it is necessary.



II. EVALUATION OF PRESENT STATE OF THE ART

It was originally planned that a large portion of the evaluation of the present state

of the art for predicting wind and virtual temperature profiles would be the evaluation

of a representative sample of operational forecasts prepared for three sites of interest

to NASA/MSFC operations. These sites are: Marshall Space Flight Center (MSFC),

Huntsville, Alabama; Kennedy Space Flight Center (KSFC), Cape Kennedy, Florida;

and Mississippi Test Operations (MTO), near Slidell, Louisiana.

A completely representative sample of operational forecasts was not available

for all levels and all forecast periods of interest. This required some change in

emphasis at the onset of the research.

Our survey of the state of the art of the predictability of wind and virtual temper-

ature profiles included an investigation of forecast techniques currently being used

by government agencies, both civilian and military, and airlines, and those that have

been, or are in the process of being developed at the Travelers Research Center, Inc.

(TRC) for various government agencies.

In the assessment of the state of the art for predicting wind and virtual tempera-

ture profiles, we considered the operational environment of the field forecaster for

NASA/MSFC operations. The "ground rules" of the operational environment are:

(a) High-speed electronic computer capability,

(b) Limited manpower, i.e., two meteorologists plus two

computer operators, and

(c) Special "on-site" observational capabilities.

In this operational environment, the field forecaster has access to three classes

of information:

(a) Centrally-prepared analyses and prognoses,

(b) Observational data from the conventional meteorological networks,

and

(c) Special "on-site" observational capability, i.e., the ability to make

frequent rawinsonde runs.

To satisfy use_" requirements, the field forecaster has to perform some

"tailoring" of centrally-prepared products. Considering the limited-manpower ground

2



rule, it appeared that a logical beginning would be to establish the adequacy of the

centrally-prepared analyses and prognoses to meet user requirements of interest in

this study. A result of this was the determination of the magnitude of the "tailoring"

task facing the field forecaster. Existing automated prediction techniques, which are

in the latter stages of development and which were developed primarily to satisfy other

user requirements, were evaluated because of their possible application in advancing

the state of the art in wind and virtual temperature profile prediction.

A list of prediction techniques that were evaluated follows. Some of these tech-

niques do not result in direct profile forecasts, but can be used to derive a portion or

portions of the wind and/or temperature profile. The centrally-prepared prognoses

are indicated.

(a) National Meteorological Center winds aloft and temperature forecasts

(0.9 km to 12.5 kin, up to 24 hours, centrally prepared) [see Section IIA];

(b) NASA/MSFC operational forecasts for sound profile forecasts

[see Section IIB];

(c) Planetary boundary-layer physical prediction models [see Section IIC];

(d) Jet-stream prediction techniques [see Section IID]

(1) 3-level baroclinic numerical model (centrally prepared)

(2) 6-level baroclinic numerical model (centrally prepared)

(3) Level of maximum wind physical-statistical modeling

technique

(4) Subjective, Air Force wind profile forecasts for Cape Kennedy

in support of vehicle launch;

(e) Physical-statistical synoptic vertical extrapolation technique

[see Section IIE].

The objectives of the evaluations reported in the following sections are to:

(a) establish the adequacy of centrally-prepared products for meeting

the operational requirements of the test sites; this in turn gives an indication

of the magnitude of the prediction problem facing the field forecaster;

(b) help delineate problem areas of operational and simulated

operational forecasts, and;



(c) assess the potential of new forecast techniques as they apply directly

to the operational requirements considered in this study.

Subsequent sections describe the evaluation of each of the forecast types, and of

the aspects of the profiles considered important in the application of the predictions

by NASA/MSFC, i.e., sound propagation, vehicle launch and design, and diffusion of

toxic fuels.

A. National Meteorological Center Winds-aloft Forecasts

Forecasts of winds aloft (and temperature) (FD's) have been prepared by the

National Meteorological Center (NMC) for transmission on Service A teletype since

August 5, 1964, in support of aviation meteorology. The forecasts are for seven

levels* to 25,000 feet (~ 8 kin) for selected stations in the U.S. In June 1965, three

more levels were added to the forecasts (30-, 34-, and 39-thousand feet, - 10, 11,

and 12.5 km, respectively). The forecasts for these three levels are transmitted on

the Automatic Data Interchange System (ADIS) teletype circuit. The three locations

of interest to NASA/MSFC space flight operations are not among those stations for

which FD's are prepared, but the FD Program has the capability to generate forecasts

for any location.

The FD's transmitted on Service A and ADIS teletype circuits are specified to be

valid for a 6-hr period (e.g., 6--12-, 12--18-, or 18--24-hr forecasts). They are

actually prepared for the midpoint of the 6-hr periods (i.e.,9, 15, and 21 hours after

initial data time) from the output of NMC's currently operational numerical model,

a 3-level baroclinic model. These forecasts are considered "representative of the

period within three hours on either side of the forecast time" [1]. One disadvantage

of these forecasts is that they are not transmitted until six hours after the initial

time; thus, the 6--12-hr forecast is, as far as the user is concerned, only a 0--6-hr

forecast.

In a description of the FD Program [i], the authors state that "complaints have

been received from the field on the poor quality of the low-level wind and temperature

portions of the forecast." The "Note" goes on to describe how the FD's are prepared

*The forecast levels are 3-, 5-, 7-, i0-, 15-, 20- and 25-thousand feet (tempera-

ture forecasts are not made for 3- and 7-thousand feet).



and what the sources of error are, and then presents some verifications of the fore-

casts. A brief summary of the content of the "Note" is given in Appendix A.

Verification by the National Meteorological Center

National Meteorological Center wind verifications were presented in "Note to

Forecasters" [1], for only two levels--5,000 and 20,000 ft. These are the levels that

are closest to two of three levels in the model (850 and 500 rob, respectively).

Consultation with NMC personnel resulted in our obtaining more detailed verifica-

tions from NMC of winds for 12- and 24-hr forecasts for 34 U.S. radiosonde observa-

tion (RAOB) stations (combined and individually). The verifications were performed

during a 25-day period from April 5 to April 30, 1965.

In general, the verifications indicated that greater than 75% of the errors for all
-1

levels are in the 3--8 m sec range, with a highest average observed speed for any
-1

level of 27 m sec Tables B-l, B-2, and B-3 in Appendix B present the detailed

statistics for three RAOB stations nearest the NASA/MSFC locations of interest.

Examination of the NMC verifications of the FD's reveals rather large vector

errors, in terms of percent, in the lower levels (at and below 3.3 kin), where:

I fcst - obs Ix 100% error = obs I

At the higher levels (~ 4 to 8 kin) the percent error is somewhat lower (although the

vector error is nearly the same). It may be stated that the percent vector errors of

the winds-aioft forecasts are relatively high for the sample of forecasts that were

verified.

The only temperature forecasts verified by NMC were in one special verification

run for 12-hr temperature forecasts for one station (New York City, JFK), for a 20-

day period, and for three levels. The levels and the root-mean-square errors (rms

errors) for each level are as follows:

1.5 km--4.7°C

3.3 km--2.2°C

6.5 km-- 1.4°C

5



Verification by The Travelers Research Center, Inc.

Because the verifications carried out by NMC were in the form of the usual error

statistics, and not with respect to the effect errors in the profile forecasts would have

on the sound profile or on the flight of an aerospace vehicle, a special collection of

FD's was made from data of September 1965. The purpose of obtaining this special

collection was to verify the forecasts relative to their usefulness in meeting NASA/

MSFC operational requirements.

Two stations in the southeastern United States were selected as being representa-

tive of the three NASA/MSFC sites of interest (Nashville, Tennessee, and; Miami,

Florida) and forecasts for these stations were verified. (Table B-4 in Appendix B of

this report presents the detailed statistics.) The following discussion interprets the

verification statistics and limitations of the FD's as they satisfy the NASA/MSFC

requirements.

Sound Pr op.__agation

A sample of FD's, detailed observed soundings, and observed values (for the time

of the forecast) at FD levels only was sent to MSFC in Huntsville. All except the

detailed observed profiles were run through MSFC's sound-ray tracing program and

the results were evaluated. Figure 1 (a--f) is a typical example of a forecast and

observed pair for six representative directions.

The reasons for the rather poor sound profile and acoustic returns specified by

the FD's are due to two major factors:

(a) the insufficient vertical definition, particularly in the lower 5 km

(e.g., temperature forecasts are for 1.5, 3.3, and 4.8 kin), and

(b) the relatively large errors of the forecasts themselves; these are

due to the errors inherent in the procedure that generates the forecasts

(see Appendix A for details).

It can be stated with a fair degree of confidence that the sound profile and

acoustic returns estimated from the detailed observed soundings would differ from

the estimates based only on information at FD levels (e.g., temperature forecasts

are for 1.5, 3.3, and 4.8 kin). NASA/MSFC and TRC soul_d propagation experts

agreed that using only the levels of the FD's gives insufficient sound profile definition

6



to satisfy the requirement for accurate and detailed sound-speed profiles.

Vehicle Launch and Design

There has been a considerable amount of research devoted to the effect of the

wind speed and shears on the behavior of a vertically-rising vehicle. Much of this

research has been described and reported in the literature [19, 27, 45]. From these

sources, and from consultation with NASA/MSFC personnel, there is general agree-

ment that the effects of the wind speed and vertical shears attain maximum importance

in the region where the jet stream is located. In this region, excessively-high

horizontal wind speeds and vertical wind Shears may be encountered. The major jet-

stream types are the polar jet and the subtropical jet. The polar jet is rarely observed

over Cape Kennedy, but the subtropical jet is frequently located over Cape Kennedy in

the winter season. The height at which the subtropical jet is located is usually between

12 and 16 km, and the highest level of the FD's is about 13 kin. Thus, these forecasts

are not adequate, in most cases, for completely describing the wind profile in the

vicinity of (and particularly above) the subtropical jet.

Table i presents the wind a_.dtemperature error statisticsfor 12- and 24-hr

FD's at the three highest levels of the forecast. It is seen from the average observed

wind speed that the wind flow was relativelyweak for this data sample, with the

-1
highest average speed of 18 m sec at approximately the 13 km level at Nashville.

-i
The rms vector error of the wind was 11 m sec for this level;this may be con-

sidered rather high for the average observed wind speed. The magnitude of the error

would probably be greater during a period of strong wind speeds.

Considering the nature of the FD procedure and its limitations, itis concluded

that the FD technique would not provide a satisfactory solution for meeting NASA/

MSFC requirements for profile predictions necessary for vehicle launch operations.

Diffusion

Because the present diffusionmodel in use at Cape Kennedy requires input

parameters from the lower 20 meters of the atmosphere, the FD's are not applicable

to diffusion prediction.



[,I
I [ i i

tu ' opn:_!;IV

7
u

_Q

II

A

t_

_D

_O

b-
¢q

¢q

°_._

0

8



I I I I I I I g

o0

I'I

1 I I
c_
c_

m ' _pn_._IV

c_

7
O

O

tl

A

.Q
v

_D

v-N

.Q

o

o

o_

.C

O

n_
o

O

9



I'I
I I I I

u'_ _14

tu 'opn_!:_Iy

I I I

¢,D

¢,D

g

II

A
e_

z

°_,,4

0

g

10



I I I I I

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

7
o

0
_0

gxl

gq

il

_4

'el

r/]

o

z

....4

o

"o

QI

"0

r_

"o

11



I I I

/
/

/
/

/
/

/
/

/
/

I
/
I

/
I

I I I I

/\
_ / \

/
/

/
/

/

I' I

I I

tu ' opns,.[_IV

I I

o

II

A

r_

4 m

°_

r_

12



I I I i I I I

/
/

/
/

/

/
/

I I I
o o o o
o o o o

I i I I

o o o

tu 'opn:_!;iV

/
/

e_

II,

o

0

7
o

0
r._

0

0

0

cq
c0

II

t,+-i

_d

ID
r_

s"
o
o

I11

Z

0

&

[1/

r/1

13



OO

O0

<
0

©

<

z

0

g
I

Z

N
I

0
0

Z _

[,-4 _ i--,4 _

-t--

r/l

-i" "

._

0

_o0 _o° _ o

v v v

C_

oO _

_-- oO 0

0 oO 0

oO

t >

14



B. NASA/MSFC Operational Forecasts

A sample of 47 6-hr wind and virtual temper ature profile forecasts prepared by

NASA/MSFC personnel was made available to us along with the corresponding observed

data. To make a comparative assessment of acoustic return from these forecast and

observed profiles, a simple geometrically-derived model was formulated. The Simpli-

fied Acoustic-ray Tracing (SART) Model is designed to represent a "transfer function"

relating regions of anomalous intensification with the causative meteorological vari-

ables. It is used to quantify a meteorological profile, producing a number or numbers

which may be used to compare associated profiles (e.g., forecast vs measured), but it

is not intended to be used as an operational forecasting model. It is a straightforward

ray-tracing model and, basically, is similar to models others have used, e.g., [43]°

The details of the model are described in Appendix C. Briefly, the model has the

following characteristics:

(a) It provides a number or a few numbers which quantify or typify the

effect of a vertical profile of meteorological variables on associated anomalous

aspects of the propagation of sound from a surface source to a surface receiver.

Theoretical accuracy may be compromised where effects are small compared

to verifications common to meteorological information, or where occurrences

are rare. The model is not specific to any one source or situation, but

provides information in a form and range easily assimilable by common

users.

(b) It gives no attention to non-critical profile regions and does not

trace the path of sound rays in order to determine range and intensity.

The assumption is made that all refraction takes place at the top of an

associated critical segment of the profile. Other simplifications include

the truncation of trigonometric-function series expansions.

(c) Its output is in the form of ranges, energy fluxes returned by the

profile segment in an azimuth region of one radian, and maximum sound

intensities in the form of decibel sound pressure levels (SPL's). The latter

two are approximately normalized for a source strength of one megawatt.

15



Inspection of a number of meteorological profiles and the output of the SART

Model indicated a distinct division of sound intensity into two regions. Anomalous

propagation by surface-based critical regions was far more prevalent than by critical

regions aloft, and the characteristics of the two were also different. Other than this,

there was no other obvious divisions, such as into regions with distinctive profile

characteristics. A grouping of profiles into five classes, as has been suggested in the

literature [43], did not seem to have any advantage. Instead, the assessment of a profile

at two points, next to the surface and at the first major critical area aloft, seemed to

be best for a semi-objective result.

With the normalized sound-pressure-level (SPL) values obtained from the SART

Model, a procedure was formulated in which differences in SPL values between two

associated profiles would be plotted against the SPL value of one of the profiles (e.g.,

the forecast profile). This has been done for 47 pairs of profiles (6-hr MSFC fore-

casts, and observations from MSFC, for dates between October 1964 and September

1965). The results, plotted separately for the two proposed classifications, are shown

in Table 2. In these few cases, serious errors occur because the sound intensity would

reach objectionable decibel levels, but would not be forecast to do so. These objection-

able decibel levels are caused by definite atmospheric intensification of sound at the

surface (and not by an acute focus).

It should be pointed out that these 6-hr forecasts may not be a completely repre-

sentative sample of forecasts covering all synoptic situations.

Although we did not have 24-hr forecast profiles for which we could assess the

acoustic return, it is expected that the forecast accuracy would be less than for the 6-

hr forecasts, considering the normal decrease in confidence factors with longer range

forecasts.

C. Planetary Boundary_Layer Prediction

As the atmosphere flows over the earth's surface, it is subjected to a variety of

forces--expressed in the Navier Stokes form of the momentum equations, including

the additional Coriolis effect arising from the rotation of the earth. In addition to

these forces which act directly on the momentum of the air, the earth's surface can

influence the structure of the air by acting as a source (or sink) of both sensible and

16



TABLE 2
CLASSIFICATIONOFACOUSTICCOMPARISONS

BETWEEN 47 PAIRS OF METEOROLOGICALPROFILES

(a) Acoustic returns from surface-based regions

_ > 25
,_ r/l

:_ 16--25

_ ---.._ -5-5
_ -15-- -6

_ < -15

Forecast decibel level

<80 80--90 91--100 > i00

3 3

4 14 1

2 3

4

(b) Acoustic returns from regions aloft

o

0

0

Forecast decibel level

> 80 80--90 91--100 > 100

> 25 1

16--25 1

6--15 2 1 2 2

-5--5 23 6 2 3

-15---6 3

< -15

17



latent heat. Beyond the fundamental complexity of the physical interaction indicated

above, one must note that the characteristics of the earth's surface as a source, or

sink, of momentum and heat depend significantly upon the structure of the air. For

example, the amount of heat available at the earth's surface depends upon the trans-

missivity of solar radiation through the air.

In the past, it was useful to study the characteristics of idealized, or model,

atmospheres in order to understand the behavior of the real atmosphere. This approach

was initiated near the end of the 19th century, but it was only after the introduction of

the electronic-digital computer in about 1950 that it became possible to examine the

predictive utility of these theoretical models.

The success achieved in predicting the large-scale motion of the atmosphere in

the mid-troposphere by the simple barotropic model led to the investigation of the

utility of more complex models for predicting the large-scale thermodynamic prop-

erties of the air. These baroclinic models have recently been perfected to the point

that the routine forecasts of the National Meteorological Center (NMC) are based upon

Cressman's 3-1evel baroclinic model [4]. Current research and development at NMC

is directed toward the implementation of a 7-1ayer model in which a rudimentary treat-

ment of the boundary layer is incorporated.

The first studies of the structure of the planetary boundary layer that utilized

a physical-numerical model were conducted by Estoque [8, 9], Fisher [i0], and Fisher

and Caplan [ii]. During the past three years, research directed toward the develop-

ment of two operationally-useful boundary-layer models has been conducted at TRC.

These two models have been designed to function with distinct sources of observational

data. In one case [31, 32, 33], the routine data are to be augmented by observations

made using meteorologically instrumented towers, slow-rise radiosondes, and other

special equipment located in a subsynoptic-scale network. In the other case [14, 15],

only routine observations are required as a data source.

The models indicated above are capable of further development, but we decided

to examine forecasts made with currently available versions in order to assess the

models' contributions to the present state of the art in boundary-layer prediction.
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The sub-synoptic-scale* model developed by Pandolfo, et al. [33], for the U.S.

Weather Bureau was designed to permit short-period (up to six hours) forecasts of the

vertical distribution of wind, temperature, and humidity at the center of a sub-synoptic-

scale observational network. Most of the numerical experiments conducted with this

model were performed using data observed during the Great Plains field program [24],

and comprise the prediction of the temporal variation of the boundary-layer structure

above a fixed point.

In Fig. 2 (a--d}, we present the observed and predicted vertical distributions of

the calm-environment sound speed and the horizontal wind components at 2-hr inter-

vals for a morning case: 0835--1435 CST, 31 August 1953.

The initial data, Fig. 2 (a), show a nearly isothermal stratification below 800 m

as indicated by the constant value of calm-environment sound speed. The horizontal

wind-speed profiles show the presence of a low-level jet at 400 m. It is significant

that this wind maximum could be solely responsible for the return of a sound wave.

Consequently, it is important that the prediction model be capable of forecasting the

development and dissipation of such wind ma__Ama. However, there is considerable

evidence that the low-level jet is frequently a nocturnal phenomenon and for this rea-

son is not often important in daylight operations [20, 35].

The accuracy of the predictions displayed in the remaining parts of Fig. 2 is

evident.

The small forecast errors would not significantly affect the accuracy of the

predicted sound propagation because the vertical gradients are very accurately pre-

dicted. For the purpose of predicting diffusion characteristics, the error noted in the
-1

predicted wind speed (about 4 m sec at 100 m) may be significant, but the static-

stability profile in the lower twenty meters is predicted very well.

Figure 3 presents a night-time forecast from 2035 to 0235 CST, 8--9 August

1953. In this case, we witness the development of a strong thermal inversion and of

a low-level jet. Both aspects of the observed air structure are predicted by the model

with considerable accuracy, especially when one emphasizes the vertical gradients

in verification.

*The sub-synoptic-scale network has characteristic spacing of - 10 miles between
instrumented observation sites (synoptic-scale spacing is ~ 100 miles).
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For a thorough analysis of these and other forecasts made with the model,

reference should be made to the previously cited research reports.

The synoptic-scale model, developed for the U.S. Air Force [14, 15] as a method

for predicting low cloudiness, holds promise as a means for obtaining longer period

forecasts of sound propagation and diffusion characteristics. Experimental computa-

tions have been conducted for three synoptic cases in which 12-hr forecasts were made

on a ten by ten grid located in the eastern United States (see Fig. 4).

As indicated earlier, this model requires only routine meteorological data as

input. The grid shown in Fig. 4 was selected as representing the maximum resolution

possible with a thorough analysis of synoptic surface and upper-air observations.

The wind field predicted by the model is based on geostrophic wind predictions

and estimates of the surface stress by means of Lettau's empirical geostrophic drag

coefficient formula [23]. For this reason, the accuracy potential of the horizontal wind-

field predictions must be judged to be somewhat less than that of the sub-synoptic-

scale model. The results seem to indicate that the temperature predictions are suf-

ficiently accurate to permit the successful specification of the profile of the calm-

environment sound-speed profile and to permit a meaningful estimate of the low-level

static stability for diffusion work. The wind profiles are not so well predicted, but

are reasonably accurate in some of the reported cases.

Figure 5 shows two examples of sound-speed profiles derived from 12-hr pre-

dictions. In both cases, the calm-environment profile is in rather good agreement with

the observed. The profiles taking wind into account are also shown for two azimuths.

Important features of the observed profiles are reproduced in the predicted profiles

for the case illustrated in Fig. 5(a). A serious error in the 90 ° azimuth profile can be

noted in Fig. 5(b). In this connection, it should be pointed out that the winds plotted

in the two parts of the figure are those observed by rawinsonde. For this reason, they

are subject to well-known inaccuracy and non-representativeness [17]. This does not

necessarily imply that the predicted winds are more accurate than the figures indicate,

but merely emphasizes the uncertainty involved in wind prediction and observation.

Before concluding this section, it is important to point out the following.

Physical-numerical prediction models of whatever type require adequate initial data

over an extensive horizontal domain. The prediction of the state of the atmosphere,
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at a fixed point at a time T hours into the future, requires the specification of the

initial state in a region extending a distance T × U (U is the mean wind speed)meters

upstream. This fact arises from the hyperbolic character of the fundamental equa-

tions governing the atmosphere. The location of test facilities on coastal waters makes

the adequatespecification of the initial state with routine synoptic observations impos-

sible. Almost noupper-air data is available over these coastal waters, and extrapo-

lation of analysis over the coastal regions is often unrealistic due to the essentially

different character of the underlying surface. It is technically necessary to consider

this requirement in any plan for implementing a physical-numerical prediction

model.

D. Jet-stream Prediction

Many articles from the literature have documented the need for obtaining a

knowledge of the vertical wind profile to determine the behavior of a vertically-rising

aerospace vehicle [5, 22, 42]. This need is particularly acute in the vicinity of the

layer of maximum wind where excessively-high horizontal wind speeds and vertical

wind shears may be encountered [44]. An evaluation experiment was performed in

which four possible techniques for the prediction of critical wind profile parameters

were compared and the suitability of each assessed, considering the specialized uses

to which the predictions must be applied. The four prediction techniques evaluated

are:

(a) 3-level model* (simulated)

(b) GWC 6-level models (numerical baroclinic)

(c) TRC level of maximum wind (LMW) predictions

(d) Persistence

Results of the evaluation of these four techniques were compared with a verifica-

tion study of Cape Kennedy subjective operational forecasts.

An explanatory comment should be made here. It is recognized that the output

of a 3- or 6-level baroclinic model is not designed to yield detailed predictions of the

wind profile. An important purpose of the verification study was to determine if an

*Levels are 850, 500 and 200 rob.

_Leveis are 850, 700, 500, 300, 200 and i00 mb.
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improvement in profile definition is achievedby statistical modeling and, if so, what

effect this improvement has on the prediction of parameters critical to NASA/MSFC

operations. Persistence, as a control prediction technique, is useful in assessing the

significance of any improvements.

Before describing the prediction parameters and the verification procedures,

a few brief comments aboutthe prediction techniques are required. The Air Force

operational models prior to January 1965provided estimates of height, winds, and

temperature at 850, 700, 500, 300, 200 and 100 rob. The model may be described as

a 2-level baroclinic (JNWP "mesh"} model from 850to 500mb and a multi-level

baroclinic model from 500to 100mb. Becausepredictions from the NMC model are

not available for this period, the GWCoperational forecasts at the appropriate three

levels (850, 500and 200mb} are used to simulate a 3-level model. The TRC (LMW}

physical-statistical modeling technique utilizes diagnostic regression equations in

conjunction with the numerical-prediction model output to predict the level of maxi-

mum wind (LMW) variables and associated shears [39]. Endlich and McLean's jet-

stream model [6, 7] is applied to the jet cores given by the wind-speed analyses in

order to sharpen the jet.

A 7-day sample of data from 9 to 15December 1964was available for the evalu-

ation of the various techniques. All techniques were verified with station observations,

which necessitates the comparison of grid-point and station data. The ten stations

and associated NWP grid points located primarily in the southeastern United States

are shownin Fig. 6. The greatest horizontal distance betweena station and its

associated grid point is approximately 80 kin. The errors involved in comparing the

grid points and stations are less than those already inherent in the observational sys-

tem. Radiosondeobservations over a wide area in the southeastern United States were

used to include a variety of wind profile types. The data used to obtain the dynamical

predictions at grid points were collected under another contract.

Three distinct problems were evident in computing the LMW height, wind speed,

wind direction, and vector and scalar shears above and below the LMW from the radio-

sondeand rawinsonde data. These problems, which result in a certain amount of

noise in the verification statistics, are:
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(a) Soundings with a broad layer of maximum wind (3--6 km thick)

rather than with a distinct band of maximum wind speed concentrated

near a particular level. As a result, in some instances, the computed

wind shears are actually smaller than those encountered below and

above the region of maximum winds;

(b) Wind profiles in which two or more distinct wind maxima at

clearly separate levels occur (i.e., both the polar and subtropical jets

are located over the station). A consequence is that for a given

observation time, the LMW parameters are representative of only one

maximum. Discontinuities in the LMW parameter values may result;

(c) Observation times where, due to missing data at jet-stream

levels, the LMW parameters and shears can not be computed. Because

missing data occurs most frequently under conditions of strong wind

speeds, the overall average magnitude of speeds and shears found in the

sample is somewhat reduced from the true magnitude. For example,

-i
the average maximum wind speed of 47 rn sec for all stations and all

observation times is undoubtedly lower than that which would have been

obtained from the sample if no data were missing.

It should be noted that, at present, TRC is working under another contract to

develop an objective analysis and prediction technique for a layer of maximum wind

(LRMW), suggested as a jet-stream analysis tool by Reiter [37]. This work should

help to overcome the problems cited above. The technique will analyze and predict

the following LRMW parameters:

(a) the mean altitude of the LRMW (bounded by levels where the

wind speed is 85% of the maximum speed in the layer),

(b) the thickness of the LRMW,

(c) the maximum wind speed in the LRMW,

(d) the mean wind direction in the LRMW,

(e) the vertical vector shear and the maximum shear below the

LRMW, and

(f) the vertical .......v_uLu_ shear and the maximum shear above the LRMW.
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In Appendix D, Fig. D-1 illustrates typical examples of the types of profiles

encountered in the data sample. It is obvious from examining the figures that the

selection of a LMW and the computation of meaningful shears above and below this

level is a difficult task. The presence of these types of profiles accounts, to a large

degree, for the high rms errors that were obtained with all techniques in predicting

the height of the LMW and the shears above and below the LMW. Both scalar and

vector shears were computed above and below the LMW in 300- and 1500-m layers.

Because results were similar for both scalar and vector shears, the scalar shear

verifications are omitted. The wind speed and direction at the LMW were combined

to determine a vector error.

In computing the predicted shears, the following levels were used for the dif-

ferent techniques:

(a) 3-level: 500 and 200 mb

(b) 6-level: 500, 300, 200, and 100 mb

(c) LMW modeling: 500, 300, 200, and 100 mb, and LMW (predicted).

In nearly every case for the 3-level predictions, the level of maximum wind is

at 200 mb, and no shears above are computed for this prediction technique. The

shears above, in most cases, are computed using 200- and 100-mb data for the 6-level

predictions, and LMW and 100-mb data for the LMW predictions. Thus, most pre-

dicted shears above the LMW are gross, linear approximations due to the limitations

of the prediction techniques.

The shears below the LMW for the 6-level and LMW modeling prediction tech-

niques are usually computed for layers of less vertical extent. Most 6-level shears

below are computed using 200- and 300-mb data, while the LMW modeling shears are

computed, in most cases, using LMW and 200- or 300-mb data. Linear interpolation

is employed where necessary.

The parameters that were verified for all time intervals are listed in Table 3.

The skill in forecasting these parameters indicates how well a given technique fore-

casts the level and intensity of the maximum wind speeds, normally located near the

tropopause. The ability to forecast the intense vertical wind shears associated with

the LMW is also evaluated. The parameters listed in Table 3 were chosen both
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because of their operational significance and because the evaluation of their predict-

abilityprovides clues to future avenues for improvement of forecast accuracy.

TABLE 3

WIND PROFILE PARAMETERS VERIFIED

Symbol

Ws(L)

Ws(L)

Z(L)

Sb(3)

Sb(15)

Sa(3)

Sb(15)

Description

wind speed at level of maximum wind

vector wind speed at level of maximum wind

height of level of maximum wind

vector vertical wind shear in 300-m layer below LMW

vector vertical wind shear in 1500-m layer below LMW

vector vertical wind shear in 300-m layer above LMW

vector vertical wind shear in 1500-m layer above LMW

A number of questions were considered in the evaluation of the wind profile pre-

dictions. Examples of the questions are:

(a) What are the largest forecast errors? Are these errors critical,

that is, could they result in a wrong go--no-go decision?

(b) Is there any bias toward over- or under-forecasting the maximum

wind speed and shears and their locations?

(c) Does the use of vector rather than scalar error statistics

significantlyaffectthe evaluation?

(d) Does the LMW modeling prediction technique significantlyimprove

the forecast of maximum wind speed, its location in the vertical and the

shears above and below this location? How does this improvement compare

to that which was obtained by using the 6-1evel model instead of the 3-1evel

model? How do allthree techniques compare with persistence?

(e) Ifthe observed profiles are stratifiedinto strong jets and moderate
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or weak jets (45 m sec -1 is a reasonable critical maximum wind speed},

how does this affect the technique comparison?

The upper-level synoptic situation was as follows. The location and intensity

of the jet-stream systems in the central and eastern United States changed consider-

ably during the data period. A strong east-west system shifted into the Atlantic Ocean

early during the period, with the result that generally light or moderate winds were

prevalent during the middle of the sample period. A strong southwest-northeast flowing

jet stream moved into the region by the end of sample time, causing a sharp increase

in wind speeds.

Root-mean-square error statistics were obtained with each forecast technique

for the four forecast intervals in two separate tests. In the first evaluation, all station

observations, except when missing, were Used. In the second test, only soundings

-1
containing observed maximum wind speeds of at least 45 m sec were used. The

overall rms errors for both tests are given in Tables 4 and 5. The rms errors obtained

for the persistence, 3-level, 6-level and LMW modeling techniques for 12-, 24-, 36-

and 48-hr forecasts are given. Because the magnitude of the rms error should be con-

sidered in the light of the observed mean and standard deviation of the variable being

predicted, these have been given in Table 6 for the height, wind direction, and speed at

the LMW, and the shears above and below the LMW.

A number of results are apparent from an examination of Tables 4 through 6.

(a} Perhaps the most important variables to predict with regard to

NASA/MSFC operations are the LMW height, wind direction_and wind

speed. The scalar and vector rms errors (in m sec -1) of the forecast

maximum wind are given in the third and fifth columns of Tables 4 and 5.

The rms error of the LMW height (in 102 m) is given in the second column.

The rms errors of the height may, at first glance, seem rather high.

However, one must again consider the great difficulty in determining the

I_aMW height for many profiles (see examples in Appendix D). This dif-

ficulty contributes greatly to the magnitude of the rms error. For all but

one forecast period (see Table 4), the LMW technique yields lower rms

errors for both LMW height ai_d wind velocity than the other three
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TABLE 4

OVERALL rms ERRORS--ALL CASES

Persistence

6-level

3-level

LMW

Prediction Forecast "_¢s(L)

technique period (m sec -1)

(hr)

13.5

14.4
12

15.6

12.4

Persistence 19.0

6-level 15.8

24
3-level 16.5

LMW 14.0

Persistence 22.0

6-level 15.8
36

3-level 16.1

LMW 14.0

22.7

16.5
48

17.7

14.4

Persistence

6-level

3-level

LMW

Z(L) Ws(L_)1
(102 m) (msec )

17.7 8.3

16.5 13.0

15.8 14.1

13.0 10.2

19.3 12.2

18.5 14.2

16.0 15.2

13.8 11.8

21.7 14.9

19.3 13.3

18.8 14.1

15.8 10.8

25.1 14.8

21.7 14.0

21.4 15.4

18.2 10.9

Sa(3)_1

m see )

3.0

3.5

3.2

3.4

3.6

3.1

2.9

3.2

2.9

Sa(15)

(m sec-I)

8.2

11.3

9.6

i0.i

10.6

8.5

9.6

9.3

7.3

Sb(3)

(m sec -I)

2.6

3.1

3.2

2.8

2.9

2.7

2.7

2.4

2.9

2.5

2.6

2.4

Sb(15)

(m sec -1)

6.4

8.3

8.6

6.9

3.4

3.4

3.0

9.2

9.5

8.0

2.9

2.4

2.7

2.3

6.5

7.7

7.8

6.7

6.7

7.2

7.4

6.4

7.4

7.0

7.4

6.7

No. of

cases

75

74

73

72

Prediction Forecast Ws(L)

technique period (m scc -1)
(hr)

TABLE 5

OVERALL rms ERRORS--'_s(L ) > 45 m sec -I

Z(L)

(102 m)

Ws(L ) Sa(3 ) Sa(15 ) Sb(3 ) Sb(15 ) No. of

(m sec -I) (m sec -1) (m sec -I) (m sec -I) (m sec -I) cases

Persistence 14.8 16.8 10.8

6-1evel 20.1 11.9 19.0

12
3-1evel 21.7 13.5 20.5

LMW 16.6 10.0 14.9

Persistence 23.6 19.5 15.8

6-1evel 22.4 16.7 21.2
24

3-1evel 23.5 14.2 22.5

LMW 19.4 11.0 17.4

Persistence 25.5 18.4 16.3

6-1evel 36 21.2 15.0 19.3

3-1evel 22.0 18.3 20.5

LMW 17.6 14.2 14.8

Persistence 25.5 15.4

6-level 21.4 19.2
48

3-level 23.3 21.2

LMW 17.2 1:].9

3.6

4.4

4.2

4.1

4.5

4.1

3.1

4.1

3.6

3.5

4.1

3.8

10.4

15.2

13.7

13.8

14.0

11.7

11.2

12.0

9.4

9.6

12.0

10.5

3.2

4.1

4.1

3.7

3.7

3.3

3.3

3.2

3.6

3.2

3.3

3.0

3.4

2.9

3.2

3.0

8.4

10.6

ii .i

9.0

8.2

10.5

10.4

9.3

7.8

9.9

10.2

9.0

8.8

9.4

10.0

9.0

31
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TABLE 6
MEANSAND STANDARDDEVIATIONS OF VARIABLES

COMPUTED FROM OBSERVATIONS(100 cases)

Variable

Z(L)

Ws(L)

Sa(3)

Sa(15)

Sb(3) 

Sb(15)

Unit Mean Standard deviation

km

-1
m sec

-1 -1
m sec (0.3 km)

-1 -1
m sec (1.5 km)

-1 -1
m sec (0.3 km)

-1 -1
m sec (1.5 km)

11.2

47.4

3.2

11.6

3.0

9.9

1.6

13.8

2.5

7.1

2.1

5.7

techniques. The 12-hr persistence forecast of maximum wind yields a

lower scalar (but not vector) rms error. Note that the difference between

vector and scalar rms errors for wind forecasts is much greater for

persistence than any of the other three forecasting techniques. This

indicates that definite skill is present in the predicted changes in wind

direction made by the Offutt numerical model. (The LMW modeling

technique wind direction forecast is tied directly to the Offutt model.) As

would be expected, the rms errors for each of the forecasting techniques

generally increases with progressively longer forecast intervals. The

increase in height rms errors is fairly uniform from 12- to 48-hr fore-

casts, while the vector and scalar wind rms errors show the greatest

increase between 12- and 24-hr predictions.

(b) An examination of Table 5 indicates that, regardless of the

prediction technique used or forecast interval, larger rms errors occur

in the sample limited to the strong wind speeds than in the entire sample,

with the exception of the LMW height. It should be remembered, however,

that percentage error is undoubtedly smaller. The rms error of the height

predictions is considerably lower, indicating the more regular movement

of the LMW under strong jet-stream conditions.
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The modeling technique yields the lowest rms errors for predictions

of LMW height (all forecast intervals) and 24-, 36-, and 48-hr forecasts of

LMW wind velocity (vector error). Persistence forecasts yield lower

scalar rms errors for 12- and 24-hr predictions of LMW wind speed. For

all techniques, the vector and scalar wind rms errors increase markedly

between 12- and 24-hr forecasts, with generally lower values for 36- and

48-hr forecasts. The rms error for height, however, is greatest for 48-hr

forecasts.

Perhaps the single most important set of error statistics in the two

tables is the vector wind rms error under strong wind conditions (third column

of Table 5). Persistence is slightly superior to the LMW modeling technique

for 12-hr forecasts. However, for 24-, 36-, and 48-hr forecast intervals,

vector rms errors change little, and representative values for each tech-

-i -i -i
nique are: Persistence, 25 m sec ; 3-1evel, 23 m sec ; 6-1evel, 21 m sec ;

-i
and LMW, 18 m sec

Thus, when a strong jet stream is present, the following is noted:

(i) Under conditions of a strong wind speed (and shears),

the LMW modeling technique was demonstrated to yield sig-

nificantly lower vector wind rms errors for longer-term fore-

casts (24-, 36-, and 48-hr intervals) than either persistence or the

3-1evel or 6-1evel technique.

(2) Persistence yields the best 12-hr forecast of LMW wind

speed. This is not true when all cases are considered, and indicates,

of course, the smaller percentage variability of the wind under

strong jet-stream conditions.

(c) The rms errors for the vertical wind shear above and below the

LMW are high, regardless of the prediction technique used. It must be

remembered that the determination of vertical wind shears above and below

the LMW is complicated by profiles exhibiting several distinct maxima or

a broad layer of maximum winds.

Considering all cases, the LMW modeling prediction technique
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produces lower rms errors for 24-, 36-, and 48-hr forecasts of vertical

wind shear than forecasts obtained from the 3-level and 6-level models

or persistence. Although a great deal of "noise" is undoubtedly present

in the rms error statistics for reasons stated earlier, there is no reason

to doubt the relative merit of the techniques as reflected in the statistics.

Tables 4 and 5 show that, in general, the rms errors do not increase for the

36- and 48-hr forecasts. The reason for this surprising result is understood when

one considers the valid times for each of the four forecast intervals. They are Ca)

12-hr, 12Z 9 December to 12Z 13 December; (b) 24-hr, 00Z 10 December to 00Z

14 December; (c) 36-hr, 12Z 10 December to 12Z 14 December; and (d) 48-hr,

00Z 11 December to 00Z 15 December. This approach was used to fully utilize the

limited sample and at the same time to retain a comparable number of cases in each

forecast interval. Figure 7(a) shows that the 24-hr forecasts of maximum wind

velocity for all techniques resulted in large rms errors at 00Z 10 December and

12Z 10 December, due to rapid changes in maximum wind speed at many stations.

48-hr forecasts were not made for these two valid times [see Fig. 7(b)], and only an

approximate comparison of rms errors for different forecast intervals can be made.

A comparison of the two parts of Fig. 7 shows that, for those valid times where both

24- and 48-hr forecasts were made, the rms errors of the 48-hr forecasts were

usually higher. The comparison of different techniques within the s___ee forecast

interval is exact (paired comparison).

A recent wind forecast verification study made at Cape Kennedy [18] provides

additional useful information. Subjective forecasts (20 to 30 hours prior to verifica-

tion time) of wind direction and wind speed in 5000 ft intervals from 5000 ft to

100,000 ft are compared with a forecast of persistence (no change) at Cape Kennedy.

Data for two years (117 wind profile forecasts made in 1963 and 1964) are divided

into four seasons. Both the velocity (vector) and speed errors are computed at each

level for the subjective and persistence forecasts. Table 7 summarizes some of the

error statistics found in [18]. The largest rms errors, both vector and scalar,

together with the level at which they are found, are given for both forecasts. Although

the magnitude of the rms errors is greatest at jet-stream levels, the percent error
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is lower. The speed forecast error contributes roughly 65% to the vector error. No

bias with regard to over- or under-forecasting occurs. Considering all levels, it was

noted that in general, the subjective forecast is superior to persistence by roughly

6--8% of t_e observed wind speed [18].

The greatest vector errors occur in the spring when the jet stream is still

relatively strong and is also subject to rapid changes. During the summer, when

errors are relatively small, the subjective forecasts are not superior to persistence

at jet-stream levels.

TABLE 7

GREATEST VECTOR AND SPEED rms ERRORS FOR SUBJECTIVE

AND PERSISTENCE FORECASTS (from [18])

(117 cases for al___lseasons)

Season

Winter

Spring

Summer

Fall

Forecast

type

Level of

greatest vector

error (kin)

rms error

Vector

(m sec -I)

Speed

(m sec -1)

Level of

greatest speed

error (kin)

Persistence 10.7 15.9 ii.i 10.7

Subjective 12.2 13.2 8.9 i0.7

Persistence 12.2 17.1 9.9 12.2

Subjective 12.2 14.6 9.3 12.2

Persistence i0.7 9.8 6.8 i0.7

Subjective 10.7 10.7 7.7 12.2

Persistence 10.7 14.6 11.0 9.1

Subjective 12.2 13.4 9.5 10.7

It is instructive to compare the persistence vector and scalar wind rms errors

obtained at Cape Kennedy with the 24-hr persistence rms errors obtained in the

verification study described here. The rms error statistics discussed here are for

10 stations, within a 7-day data period. The Cape Kennedy statistics are for a single

station, with cases occurring over a period of several months. The error statistics

given in the study described here are most comparable to the "winter" subsection of

the Cape Kennedy data. The errors at Cape Kennedy at jet-stream levels are com-

pared with the LMW modeling technique errors in Table 8. The 24-hr persistence

vector wind rms errors indicate that the maximum wind velocity at the 10 stations
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used in the verification study was probably stronger and more variable during the data

period than the average maximum wind speedconditions in the CapeKennedywinter

sample. At CapeKennedy, the vector wind rms error is lowered 23.7%at 10.7 km

using subjective forecasting procedures. The percentage reduction is much less at

12.2km andno reduction is obtained at 13.7km. Using the objective LMW modeling

prediction technique, the 24-hr vector wind rms error is reduced 26.3%. The average

height of the LMW was 11.3kin. Johannessen[21] has indicated that in middle latitudes

an average improvement of 30 to 35%over the persistence vector wind rms error is

possible near or just below jet-stream levels.

TABLE 8
COMPARISONOF PERSISTENCE,SUBJECTIVE,AND OBJECTIVE

24-hr* FORECASTSOF WIND VELOCITY

Vector rms error (m sec-I)
Level

Persistence Subjective
(kin)

10.7

12.2

13.7

LMW

15.9

14.2

12.1

19.0

12.1

13.2

12.2

Objective

m

m

14.0

Percent improvements

_Per sistenc____eminu______sforecast x 100)
persistence

23.7

7.0

-0.8

26.3

*The rms errors given for the 10.7-, 12.2- and 13.7-kin levels are for a

variable forecast interval of 20--30 hours.

This limited indirect comparison implies that objective procedures for predicting

maximum wind velocity are, at the very least, competitive with subjective forecasts

for a 24-hr forecast interval.

A large number of scatter diagrams (plotting forecast versus observed values)

and graphs showing individual rms errors for each observation time (e.g., see Fig. 7)

were constructed for different forecast techniques and lags. The purpose of these

graphs was to determine (a) the error variability and associated meteorological events,

(b) extreme errors, and (c) existence of bias in the prediction methods.

Figure 8 depicts scatter diagrams of observed versus LMW modeling 24-hr
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forecasts of LMW speedand height. Eachplotted dot is a forecast with the correspond-

ing observation (74cases).

Figure 8(a) clearly shows that, in general, there is goodagreement betweenfore-

cast and observed values. There is a tendencyto under-forecast the magnitude of the

LMW wind speed,becausemore points are abovethan below the line of perfect agree-

ment between forecast and observation. The problem of under-prediction andthe

magnitude of the extreme errors is greater in the 3- and 6-level predictions than in

the LMW modeling predictions. Becausemost observed LMW wind speedsof opera-

-1)tional interest (at least 50 m see are under-forecast, the possibility exists of making

an incorrect decision for the initiation of a scheduledvehicie iaunch.

Figure 8(b) showsthat there is a tendency to over-predict the height of the LMW

for the period considered. Considering the problems involved in defining the LMW,

most forecasts are reasonably good--the predicted height usually being within 1.5 km

or less of the observedheight.

The problem of under- or over-prediction canbe summedup with the following
-1

set of numbers: The mean observed LMW wind speedfor all eases is 47 m see ;
-1

the mean 24-hr LMW modeiing predictions are 39 m see ; the mean 24-hr 6-level
-1

predictions are 34 m see ; the mean observed height of the LMW is 11.2 km, and;

the mean 24-hr LMW modeling prediction is 11.8 kin.

E. Physical-statistical-synoptic Profile Prediction

The National Meteorological Center (NMC) transmits a large number of prog-

nostic charts for various levels in the atmosphere for time periods up to 72 hours.

Table 9 lists the charts, number, transmission and verifying time. It would be desir-

able to use this multitude of prognostic information to attempt to derive wind and

temperature profile predictions.

We designed a technique whereby profile forecasts are generated from the sur-

face to 10 mb (~ 30 kin) for periods to 36 hours. (Predictions can be extended to 48

and 72 hours if the results up to 36 hours appear to warrant the extension.) The tech-

nique makes use of:

(a) the NMC prognoses,

(b) hydrostatic and pressure-gradient relationships,
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(c) a trajectory method, and

(d) the equations developed at TRC for vertical extrapolation of heights

and temperature for all mandatory constant-pressure surfaces from 300 to

10 mb [34, 40, 41].

This is the type of technique that can be used at a weather station; the details

of it are contained in Appendix E.

A 20-day collection of NMC prognoses and analyses of constant-pressure sur-

faces, and radiosonde data for October 1965, were used to test the technique.

Nashville, Tennessee, the nearest RAOB station to Huntsville, was chosen as the

station for which verifications would be performed. Of this collection, only seven

observation times had a complete set of charts and observed data necessary for

verification. The reduced sample that could be used from the complete 20-day period

resulted from missing 50-, 30- and 10-rob data and/or because some prognostic charts

were not received for various reasons. The charts required to generate the 12-, 24-,

and 36-hr profile forecasts are shown in Table 10.

All of the prognostic information and most of the analyses except the 250-, 150-,

50-, 30-, and 10-mb analyses are NMC products transmitted via the national facsimile

network. For the analyses not transmitted, radiosonde data was used for analysis in

the area of interest.

Although the technique provides forecasts at all mandatory levels from the sur-

face to 30 km, its primary purpose is to generate predictions for stratospheric levels

from 100 to 10 mb (- 16 to 30 km). The techniques given in Section II, A--D, are for

low- and mid-tropospheric levels. The verifications discussed in those sections are

considered representative of the present state of the art for tropospheric profile pre-

diction. Although tropospheric levels (850, 700, 500, 300 and 200 mb) were verified

in the course of the evaluation of this technique, there was little additional information

that could be obtained from the error statistics; there are two reasons for this:

(a) numerical prognoses are common input to almost all prediction techniques investi-

gated, and (b) the sample size was small (7 cases) relative to the sample size in the

verifications of the other techniques. Thus, in the following, results for the trop-

ospheric levels are discussed only in general terms, while more detailed results are

presented for stratospheric levels.
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TABLE 10
ANALYSISAND PROGNOSTICCHARTSUSEDIN VERTICAL

EXTRAPOLATION PREDICTION TECHNIQUE

Initial-time
analysis charts

(mb)

Surfacepressure

85O

70O

5O0

3OO

25O

2O0

150

100

50

3O

10

12-hr
(rob)

500

Prognostic charts

24-hr
(rob)

Surfacepressure

36-hr
(mb)

Surfacepressure

850

700

500

300

200

700

500

300

1000--500
thickness

It is necessary to keep in mind the small sample size when evaluating the error

statistics presented in this section. They are meant only to indicate, in a general

sense, whether the technique is worthwhile to use as an aid in generating profile fore-

casts for the stratosphere. Firm conclusions cannotbe drawn becauseof this small

sample.

Two experiments were conductedto test the prediction technique.

(a) Experiment 1--All NMC constant-pressure-level prognostic charts

available for 12-, 24-, and 36-hr forecast periods were used, andthe NMC

height analyses (used as "past" data in the regression equations)were cor-

rected to better fit the observedwind field by using the geostrophic wind

scale.

(b) Experiment 2--Only the 500-mb prognoses were used in conjunction

with the vertical extrapolation height and temperature. Regression equations
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were used to obtain prognoses at 300, 250, and 200 mb. (NMC analyses were

corrected to better fit the observed wind data as in Experiment i.)

A total of 21 forecasts for each experiment were generated from the sample of

7 observation times (three forecasts per initial observation time).

A set of temperature and wind forecasts and ol,served profiles were prepared

to illustrate the results for Experiments 1 and 2. T:_bJes ii and 12 summarize the

forecast errors for temperature and wind (i00 to i0 rob) for seven observation times.

The temperature profiles showed little or no difference for the two forecast

methods, especially at the stratospheric levels (at levels below 300 mb the two methods

are identical, (see Fig. 9). Neither method showed the small-scale features of the

observed soundings, but each followed the observed profile in general characteristics.

Examination of Table ii reveals that the difference in the average temperature

forecast errors between the two experiments is insignificant. Average errors are

generally between 2 and 3°C for all levels and forecast intervals. Persistence as a

forecast produces errors within the same range. The difference between the two fore-

cast methods and persistence as a forecast can also be considered insignificant. There

is a tendency for persistence errors that are consistently higher than forecast errors

for the 36-hr forecasts of this data sample. A larger sample is necessary to estab-

lish any firm conclusions regarding the relative merits of the forecast technique and

persistence beyond the 24-hr forecast period.

Forecast wind-speed profiles did not exhibit any particular tendency to be con-

sistently lower or higher than observed wind speeds, but errors were generally higher

than those given by persistence as a forecast. Figure i0 is an example. Experiment-

2 forecasts appeared to result in lower average errors than Experiment-i forecasts

for 50 to i0 mb for all forecast intervals, although the error at i00 mb was higher in

Experiment 2 for 24- and 36-hr forecasts (see Table 12). The cause of this result

was not readily apparent, but there is doubt that one would achieve the same result

using a large data sample.

At tropospheric levels, the forecast wind profiles usually indicated correctly

the mandatory constant pressure surface at which the maximum wind speed occurred;

however, the maximum wind speed was predicted to be higher than observed for
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(a)

TABLE 11

TEMPERATURE FORECAST ERRORS* (100--10 rob)

Experiment 1 (500-, 300-, and 200-rob prognostic charts)

Forecast

length

(hr)

12

24

36

Pressure

level

(rob}

100

50

30

10

100

50

30

10

100

50

30

10

Max.

error

4.7

2.5

4.6

4.6

4.8

5.1

7.4

4.1

4.0

6.3

5.0

1.8

Persistence

5.5

3.6

3.3

5.0

6.9

3.8

4.7

5.9

6.1

5.6

5.8

2.7

Min.

error

0.8

1.1

0.7

0.1

1.1

0.8

0.1

0.0

0.2

0.9

0.1

1.4

Persistence Avg.
error

0.1

0.3

0.1

0.6

0.1

0.6

0.5

1.7

0.3

2.0

0.7

2.7

2.3

1.7

1.8

2.4

2.2

2.9

2.8

2.2

1.8

3.1

2.3

1.6

Persistence

2.4

2.2

1.3

2.8

2.3

2.3

2.5

2.9

2.4

3.3

2.9

2.7

(b) Experiment 2 (500-rob prognostic charts)

Forecast

length

(hr)

12

24

36

Pressure

level

(mb)

100

50

30

10

100

50

30

10

100

5O

30

10

Max.

error

5.2

2.6

4.6

4.6

5.8

5.2

7.5

4.2

3.8

6.4

5.1

1.7

Persistence

5.5

3.6

3.3

5.0

6.9

3.8

4.7

5.9

6.1

5.6

5.8

2.7

Min.

error

0.8

1.2

0.6

0.1

0.6

0.9

0.1

0.0

0.1

1.1

0.2

1.7

Persistence

0.1

0.3

0.1

0.6

0.1

0.6

0.5

1.7

0.3

2.0

0.7

2.7

Avg.

error

2.3

1.7

1.8

2.4

2.0

3.0

2.8

2.2

1.8

3.0

2.3

1.7

Persistence

2.4

2.2

1.3

2.8

2.3

2.3

2.5

2.9

2.4

3.3

2.9

2.7

*Errors are in I°CI.
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Forecast Pressure

length level

(hr) (mb)

i00

5O
12

3O

I0

i00

5O
24

3O

i0

i00

5O
36

3O

i0

TABLE 12

WIND SPEED FORECAST ERRORS*(100--10 mb)

(a) Experiment 1 (500-, 300-, and 200-mb prognostic charts)

Max. Min.
Persistence Persistence

error error

12 6

i0 5

12 7

6 3

18 9

18 5

17 3

13 5

25 15

33 7

35 8

39 6

Avg.

error

5.3

4.6

6.1

3.9

7.3

9.4

9.5

6.9

8.0

12.7

14.4

12.7

Persistence

3.6

3.0

4.5

1.8

5.1

3.5

2.0

4.3

5.7

3.4

5.1

3.3

Avg.

observed

wind

speed

15.6

6.3

4.3

8.7

12.7

10.1

6.9

8.7

12.9

5.2

3.8

7.5

Forecast Pressure

length level

(hr) (mb)

i00

50
12

30

i0

i00

50
24

30

i0

i00

50

36
30

i0

-I
*Error are m sec

(b) Experiment 2 (500-mb prognostic charts)

Max.
Persistence Min. Persistence A___vo.

error error error
Persistence

i0 6 1 1 5.2 3.6

8 5 0 1 2.2 3.0

ii 7 2 2 4.6 4.5

6 3 1 1 3.4 1.8

22 9 3 1 9.7 5.1

15 5 0 3 7.1 3.5

15 3 3 1 6.9 2.0

6 5 2 0 4.6 4.3

26 15 2 1 11.7 5.7

13 7 1 0 5.1 3.4

14 8 1 3 5.5 5.1

9 6 3 1 5.4 3.3

Avg.

observed

wind

speed

15.6

6.4

4.3

8.7

12.7

10.1

6.9

8.7

12.9

5.2

3.8

7.5
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several of the cases in the sample. The maximum wind speed is often located between

constant pressure surfaces, a situation that is not specified by this forecast procedure.

The semi-obejective profile forecast procedure and the results of sample fore-

casts were evaluated with respect to NASA/MSFC operational problems. The products

from the technique are obviously not applicable to the toxic-fuel diffusion problem.

With regard to sound propagation, the major limitation of the profile forecasts

is that the variables, temperature and wind, are specified only at the surface and at

mandatory constant pressure surfaces (850, 700, and 500 rob; i.e., 1.5, 3, and 5.5 km).

Accurate sound profile and ray-tracing forecasts require greater definition than is

given by these forecasts. Also, low-level temperature inversions (surface to 1.5 km)

were not forecast very well. It is concluded that this forecast technique is not useful

for sound profile forecasts.

For vehicle launch and design, considering the results of the evaluation of jet-

stream prediction techniques (Section IID}, it would be more advantageous to use a

level of maximum wind modeling technique in conjunction with constant-pressure-sur-

face prognoses than it would to use the constant pressure prognoses alone (as in the

technique evaluated in this section}. For stratospheric levels, persistence is gener-

ally at least as good as the technique being evaluated for 12- and 24-hr forecast inter-

vals. This is true for winds in the fall-season data sample used, but results may be

different with a data sample for winter, when more significant changes occur at

stratospheric levels.
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III. SUMMARY OF EVALUATION STUDIES

To perform a meaningful analysis of the evaluation study, one must keep in mind

the specific forecast system of interest. In the situation evaluated here, the system

consists of field stations manned by a small professional staff with access to: (a)

centrally-prepared analyses and prognoses via facsimile and teletype, (b) conventional

observations via teletype, and (c) special observations at the field forecast office

locations. In addition, these field forecasters have high speed electronic computers

available for use.

The first phase of the evaluation was directed toward establishing the adequacy

of the centrally-prepared products in meeting the operational requirements of NASA/

MSFC. This phase points up the magnitude of the "tailoring" task facing the field

forecaster.

The second phase of the evaluation was concerned with assessing, where possible,

some operational profile forecasts prepared by the field forecaster. Also included in

this phase was an examination of the approaches of the various objective techniques to

ascertain their usefulness relative to NASA/MSFC operational requirements.

The analysis of the various objective prediction techniques also afforded some

insight into the possibility of predicting the small-scale features of profiles. The

results of the evaluation are summarized below.

A. Adequacy of Current Centrally-prepared Products

The evaluations reported in Sections II A and II D, and in the literature cited,

indicate: (a) that profile predictions obtained from centrally-prepared products are

useful, but do not adequately meet the user requirements considered in this study,

and (b) that considerable "tailoring" of these centrally-prepared products is required

by the field forecaster. Specific problem areas are outlined below.

Vehicle Launch and Design

Straightforward inferences from multi-level dynamic predictions of important

wind- and temperature-profile parameters in the vicinity of the level of maximum wind

have some undesirable characteristics. First, the predicted magnitude of the maxi-

mum wind is, on the average, seriously underestimated. This bias is especially

noticeable for the cases where the observed maximum wind is in excess of 45 m sec -1.
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The presently-available vertical resolution leads, not surprisingly, to serious dis-

crepancies betweenobserved and predicted vertical shears.

Sound Propagation

The winds-aloft and temperature forecasts (NMC FD's) contain inadequate

vertical resolution to derive a detailed speed-of-sound profile for use in the NASA/MSFC

ray-tracing model.

Diffusion

The centrally-prepared products yield only general guidance information to a

field forecaster charged with furnishing predictive meteorological input to the present

diffusion model in use at Cape Kennedy.

B. Potentially-useful Approaches to the Profile Prediction Problem

In addition to evaluating the available operational forecasts, we examined poten-

tially-useful approaches that could lead to the development of automated forecaster

aids. The results are discussed below.

Vehicle Launch and Design

For the important region in the vicinity of the jet stream, a physical-statistical

modeling technique yielded 24-, 36-, and 48-hr forecasts of the LMW wind velocity

that were considerably better than persistence or predictions obtained directly from

the numerical models. An indirect comparison of the modeling forecasts with a

sample of operational forecasts indicates that the objective procedure for predicting

maximum wind velocity is, at the very least, competitive with the subjective tech-

niques. The prediction of vertical shear was not satisfactory for any of the methods

tested. However, the modeling approach holds promise if the predictand (vertical

shears) is reformulated in terms more meaningful to the specific operational require-

ments of interest, and if more precise observations of the redefined predictand are

employed when developing the required modeling predictor--predictand relationships.

For levels in the stratosphere, results reported in the literature [30] indicate

that a physical-statistical prediction model can yield predictions superior to persistence

for forecast periods up to 48 hours.

Sound Propagation

An analysis of the prediction of wind and temperature profiles in the planetary
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boundary layer, made with a physical-numerical model, revealed promising results.

The vertical resolution of the predicted profiles is more compatible with the opera-

tional requirements than are other methods investigated. For some locations where

the observational network is inadequate for the employment of a physical-numerical

model, statistical methods would have to be substituted.

Analysis of a sample of operational, subjective 6-hr forecasts prepared by

NASA/MSFC personnel indicated that, in general, operational requirements were satis-

fied. However, there were instances where the forecast evaluation indicated errors

in the associated sound-propagation forecasts.

Diffusion

Of the prediction techniques investigated, the planetary boundary-layer predic-

tion models show the most promise for use in toxic fuel diffusion prediction. The

present diffusion "prediction" equation in use at NASA/KSFC uses real-time data to

estimate the diffusive potential of the atmosphere and, therefore,is in reality a

diagnostic equation. A prediction of diffusive potential, however, may be hampered

by the inability to predict accurately the meteorological variables in the equation.

A study evaluating the predictability of possible diffusion parameters is required to

aid the designers of a diffusion prediction model.

C. The Potential of Predicting Small-scale Profile Features

An analysis has been made by Reiter [37] using AN/GMD 1 observations col-

lected in the United States and southern Canada during February and March 1954. He

showed that significantly different wind profiles are obtained by examining: (a) the

originally computed sounding, (b) a smoothed profile, and (c) coded teletype data, and

by changing the location in the vertical of the standard reporting levels.

A more recent publication [17] has given the accuracy of upper-air data obtained

from AN/GMD 1 and AN/GMD 2 RAWIN sets at the Air Force Eastern Test Range.

The pertinent figures given were that if the magnitude of the mean vector wind from

the surface to 12.2 km was in the 15 to 30 m sec -1 range, the vector rms error of the

-1
observed wind at 12.2 km is 7 m sec If the mean vector wind is in the 30 to 45 m

-1
sec range, which would be the case with a strong jet stream present, the observed

error at 12.2 km increases to 15 m sec -1 If the wind speed at 12.2 km was 75 m
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-1 -1
sec , a 20% error results; if the wind speed at this level is 60 m sec , the error

is 25%. Obviously, possible errors of this magnitude are not inconsequential.

They will result in a certain degree of error being incorporated into a wind-profile

prediction, because any subjective or objective forecast technique is highly dependent

on initial-state conditions. Further, verification of prediction results is complicated

by observational error.

More accurate wind-profile observations are now available at KSFC. This

allows more accurate definition of profile parameters; prediction experiments out-

lined in Section IV will yield quantitative measures of the increase in predictability

resulting from the employment of more accurate initial conditions.

The evaluation studies carried out afforded some insight into the feasibility of

incorporating into prediction techniques the information contained in more accurate

and more frequent profile measurements. Evaluation of the LMW modeling technique

indicates that models developed from sub-synoptic scale observations of the jet stream

can be employed to reduce the bias in dynamical wind predictions in the vicinity of the

jet stream.

Prediction experiments, employing planetary boundary-layer models that simulate

important sub-synoptic physical processes, have demonstrated the capability of pre-

dicting changes in the small-scale vertical structure of the wind and temperature

fields. Further studies employing special observational samples are needed to firmly

establish the degree to which parameterization techniques can depict small-scale

structure of wind and temperature fields.
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IV. TECHNIQUE DEVELOPMENT PLAN

In formulating a meaningful Technique Development Plan to improve the state

of the art of profile prediction, it is necessary first to consider the future plans that

will result in changes to the output from centralized automated weather centers. Two

major programs of considerable importance are presently being conducted by the

meteorological community. First, research is being conducted on a broad front and

will likely lead to the implementation of more sophisticated dynamical prediction

models. It is anticipated that the introduction of a primitive equation model at NMC

in the near future will yield forecasts of the large-scale circulations that give greater

vertical definition. Second, the implementation of the World Weather Watch [36] holds

great promise for realizing more complete global observational coverage. This, plus

the evolution of the dynamic prediction models, will lead to greater accuracy in fore-

casting the large-scale hemispheric circulation for periods out to 72 hours. However,

it is highly unlikely that these improvements will, by themselves, yield entirely satis-

factory results for the operational needs considered in this study. Thus, it seems that

in the immediate future the field forecaster will be faced with the problem of com-

bining the information contained in the output of the centralized forecasting units with

standard observational information, as well as with the information obtained from

special "on-site" observations. The primary objective of formulating a Technique

Development Plan is the utilization of automated techniques to assist the field fore-

caster in synthesizing the vast quantity of information at his disposal so that he may

obtain operationally useful profile predictions.

In formulating the Plan, valuable clues were obtained regarding the various

approaches derived from the evaluation phase of this study. In addition, TRC scientists

who have been deeply involved in similar technique development efforts with the

U.S. Air Force and U.S. Weather Bureau were consulted. The Technique Development

Plan has been designed to take advantage of the unique observational capabilities of

the research and development sites of interest. Another important general feature

of the Plan is that, for each study proposed, careful consideration will be given to the

definition of the predictand such that it will be expressed in the most useful terms for

the operation it supports. The Plan is subdivided into three projects generally
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conforming to the three operational problem areas outlined by NASA/MSFC.

Project I is concerned with upper-tropospheric and stratospheric prediction.

The aim here is to obtain accurate profile predictions in the vicinity of the jet stream

which, of course, are critical for vehicle launch operations.

Project II is concerned with the development of lower-tropospheric profile pre-

dictions. The goal is to provide better vertical definition in the predictive profiles,

mainly in the support of the sound propagation problem, but also to attempt to provide

useful information for the prediction of the diffusive potential of the atmosphere.

Project IH is concerned with diffusive parameter prediction. The objective is

two-fold. First, methods will be developed to predict the parameter required for

currently-employed diffusion models. Second, an assessment will be made of the

relative predictability of a larger set of possible diffusion parameters to guide the

development of more sophisticated diffusion models.

A. Project I: Upper-tropospheric and Stratospheric Prediction

The primary emphasis here is to develop tecLuiques that yield more accurate

wind-profile predictions in the vicinity of the level(s) of maximum wind. The project

is subdivided into three tasks.

Task I.l: Physical-statistical Prediction of Wind Profiles

The objective is to develop prediction techniques for the wind profile in the

vicinity of the LMW. Prediction techniques will apply to the southeastern U.S., and the

primary zone of interest will extend from 10 to 16 km. The forecast interval will

initially be 0--48 hours.

Statistical methods will be employed to combine predictive information from

several sources to yield prediction equations for salient features of wind profile. The

predictands will include the magnitude of the wind speed at the LMW, height of the

LMW(s), shears above and below the LMW(s), the thickness of the "layer" of maximum

wind, and the probability of exceeding special "threshold" values of these parameters.

In developing prediction equations, the profile parameters will be specified

•where possible from the FPS-16 Radar/Jimsphere Wind Data.

The sources of predictive information to be consider ed a_'e:

(a) centrally-prepared multi-level numerical predictions,
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(b) analyses of conventionalmeteorological observations, and

(c) special high-resolution "on-site" observations.

For short-range predictions (0--12 hours) emphasis will be placed onusing, as

predictors, initial conditions and time changesof these initial conditions derivable

from the conventionaland special observations.

A large number of possible predictors will be considered in the derivation of

the prediction equations. These predictors will be derived not only from observations

at the predictand station, but from observations at a network of stations in the vicinity

of the predictand station.

The necessary reduction of the number of predictors to be used in the actual

prediction equationswill be doneobjectively by statistical screening methods [25, 26].

The predictor--predictand relationships will be derived statistically. There is a

choice of methodsbut, for the most part, regression techniques will be used [25].

However, if estimates of the probability of exceedingcertain threshold values of the

predictand are operationally useful, an analysis of the same developmental sample by

the REEP (Regression Estimation of Event Probabilities) technique will be made. The

feasibility of this approach was established by Ball [2].

For the longer forecast periods (out to 36--48 hours), the approach will be

similar, but greater emphasis will be placed onutilizing the predictive information

contained in centrally-prepared multi-level dynamical predictions. Here the work of

Reiter [37] and Spiegler [39] will be extended. Salient features of the wind profile such

as height(s) of the LMW(s), magnitude of the maximum wind, thickness of the layer of

maximum wind (LRMW), andthe associated shears will be related to the output of

multi-level dynamical predictions. The derived specification equations, when applied

to prognoses, will yield a mapping of the LRMW parameters.

A secondstep in this approachwill be to further refine the estimates of

profile parameters by employing modeling techniques. Earlier experiments by

Spiegler [39] have shownthat there is a tendency for existing dynamical models to

underestimate the magnitude of the wind speedin the vicinity of the axis of the jet

stream. Spiegler further demonstrated that this bias can be reduced by employing a

jet-stream model similar to that of Endlich [6]. The modeling technique takes into
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accountthe structure of the wind field in the vicinity of the jet core, and leads to an

improved estimate of the wind field at the jet-stream level.

Task 1.2: Prediction of Wind and Temperature Profiles

The objective is to develop a wind and temperature prediction technique for the

stratosphere. This technique will be applicable to the southeastern U.S. and will yield

temperature and wind predictions for the 100-, 50-, and 30-mb levels. Initially, the

forecast period will be 0--36 hours.

A physical-statistical prediction model developed by Ostby, Veigas, and

Erickson [30] will be extended to optimize its usefulness in support of launch opera-

tions. The present model utilizes a predictor grid centered at the predictand station.

Two classes of predictors are employed in this model; one is dynamic predictions of

tropospheric circulation parameters, and the other is analyzed parameters in the

stratosphere and time changes of those parameters.

A test on independent data indicated that the model yielded predictions superior

to persistence for both the 24- and 48-hr forecast intervals [30]. In modifying the

technique, emphasis will be placed on minimizing the errors in gradients rather than

on minimizing the errors in the height field.

Task 1.3: Development of a Synoptic Climatology of Wind and Temperature
Profiles

The objective is to test the feasibility of the decision-tree approach to generate

a synoptic climatology of wind and temperature profiles. Initially, operationally-

important LMW parameters will be studied. If the feasibility study proves success-

ful, the work could be extended to include profile parameters of importance to sound

propagation. The prediction period of interest extends to 72 hours.

The principle difficulty in deriving a synoptic climatology that is more mean-

ingful than conventional climatology is that there is almost countless criteria that

could potentially serve as a basis for subdividing a sample into a series of types.

Further, a given set of types may prove to be an effective predictor for one parameter,

but rather useless for another.

To alleviate these problems, a computerized decision-tree framework is sug-

gested so that a number of criteria may be tested. A series of stratifying criteria

will be tested and the relative frequency of occurrence of categorized profile
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parameters will be computed and compared with conventional climatological relative

frequencies. In this fashion, numerous stratification criteria and their order of appli-

cation can be tested in an efficient manner. If the study is successful, a better 48--72-

hr climatology for LMW parameters will be available to the field forecaster.

B. Project II: Lower-tropospheric Prediction

The most significant shortcoming of the profile forecasts in the lower troposphere

that are readily available to the field forecaster is the lack of vertical resolution in

profiles derivable from centrally-prepared prognostic charts.

Two approaches are recommended to overcome this deficiency. The first is to

develop physical and physical-statistical models capable of directly producing profiles

of wind and virtual temperature. The dual development of models is recommended

because observational requirements for a physical model may not be met for all loca-

tions, e.g., coastal sites.

The second approach is to develop a series of automated aids that can be

employed on an "on call" basis to assist the field forecaster in establishing the time

evolution of the synoptic situation, which in turn will aid in making inferences of time

changes in the wind and virtual temperature profiles.

Task II.l: Observational Requirements for Planetary Boundary-layer Models

The objective is to provide the necessary guidance information to decide which,

if either, of the planetary boundary layer (PBL) models discussed in this report should

be implemented in support of sound profile prediction for static test firings.

The initial approach will be to present to MSFC scientists, who are knowledge-

able of future meteorological requirements, a summary of the observational require-

ments of the two models, the length of the useful forecast period, and the accuracy

potential of both models. If such a technical exchange cannot provide sufficient infor-

mation to determine the relative suitability of the two models, the next step will be to

design experiments, using existing special observational networks, to provide the

required information.

Task II.2: Development of a Physical Planetary Boundary-layer Model

The objective is to develop a physical prediction model that yields wind and

virtual temperature profiles in the lower 2 km of the atmosphere. Both of the two
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possible approachesare physical atmospheric models that include processes such as

eddy fluxes of heat and vapor, the transport of heat and vapor by horizontal winds, the

influence of terrain- and friction-induced vertical motions, andthe heat and mass

exchangesinvolved in water-substance phase changes.

The developmentalmathematical formulation onboth models has reached a

point where work on the required set of programs for an implementable "base tech-

nique" could be initiated. The prime difference betweenthe two models is that one

uses observations from a conventional meteorological network, while the other

requires augmentationof these observations from a sub-synoptic scale observing

system.

Task II.3: Development of a Physical-statistical Prediction Model

The objective is to develop and test a prediction technique for the wind and vir-

tual temperature profiles between the surface and 6 km, in support of sound profile

predictions. The techniques developed will be applicable to the three test sites of

interest. Prediction intervals will initially extend to 36 hours.

Profile prediction relationships will be derived by the method of screening

regression. Predictors will be selected from three sources:

(a) Detailed analyses of the wind and temperature of a three-dimen-

sional array of grid points over the southeastern U.S. The horizontal

and vertical spacing of the grid array will be compatible with the avail-

able observational data;

(b) Special "on-site" rawinsonde observations taken at frequent

intervals prior to forecast time;

(c) Multi-level prognoses for 850, 700, and 500 mb.

The predictands, and the wind and virtual temperature profiles, will be formu-

lated in several ways. One alternative would be to derive prediction equations for the

change in virtual temperature for each of several levels within the layer of interest.

Another alternative would be to represent the predictand profile by a curve-fitting

technique and to derive prediction equations for the fitting coefficients. This would

permit a forecast of the complete profile. Multiple formulations of the predictand

are recommended, because the added cost is slight and it is not obvious which of
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several possible formulations will lead to the best results whenthe predictions are

used as input for specific operational problems, e.g., soundpropagation predictions.

Task II.4: Development of "on call" Objective Forecast Aids

The objective is to provide a series of objective automated aids that could be

employed at the discretion of the field forecaster. These techniques will be applicable

to the southeastern U.S.; initially, forecast periods out to 36 hours will be considered.

Multiple approaches are visualized for this task. The first step will be to outline

specific objectives; this will be done jointly by the scientists responsible for the devel-

opment of the aids and by operational personnel.

In general, the plan will be to isolate significant features of the circulation

patterns and then to develop techniques to predict their behavior. As an example,

there are occasions when an approaching cyclone will dominate the sequence of

weather at a given field station. In this case, prediction methods for the displacement

and change In intensity of the cyclone could prove to be of valuable assistance.

A series of techniques which might be considered for implementation as aids

is:

Ca) Prediction of the displacement and change in intensity of cyclones

and anti-cyclones: These techniques have already been developed and tested [28,

29]. They have been automated and are used operationally at the Travelers

Weather Service.

(b) Prediction of the behavior of fronts: Development along the lines

of the cyclone prediction experiments are recommended. That is, pre-

dictors would be defined in a moving coordinate system fixed with respect

to the location of the surface frontal position. Frontal motion and asso-

ciated characteristics would then be related to meteorological parameters

analyzed over the moving coordinate predictor grid.

(c) Prediction of low-level (launch} winds: Russo, et al. [38], in a

statistical prediction experiment, produced results superior to subjective

7-hr forecasts of the surface wind. A possible aid could be developed

along similar lines, where winds are related by statistical techniques to

parameters measured over a meteorological network in the southeastern
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U.S. The output of this techniquecould be in terms of the probability of

occurrence of operationally-important categories of wind speed and/or

direction. Parameters derived from both special observations and

centrally-prepared products wouldbe considered.

(d) Prediction of cyclogenetic tendencies: Experimental application

of the cyclone change-in-intensity equations indicate that it may be

feasible to develop a technique to delineate areas where cyclogenesis is

probable.

C. Project III: Diffusion Parameter Prediction

Two tasks are recommended for this project. First, the predictability of the

meteorological parameters currently used in the operational diffusion equation must be

established as a function of forecast interval. In addition, there is a need to establish

the relative predictability of additional meteorological parameters that might be

considered for inclusion in future diffusion models. Such results should provide valu-

able guidance for those involved in developing more sophisticated diffusion models.

The second task is to develop techniques for predicting the development and

dissipation of a significant profile feature--the low-level inversion.

Task III.1 Establishment of the Predictability of Possible Diffusion Parameters

The objective is to derive prediction equations for the parameters presently

employed in the operational diffusion model [16], and to establish the relative pre-

dictability of a more comprehensive set of possible diffusion parameters. This will

provide guidance to researchers developing more sophisticated diffusion models for

implementation into a diffusion prediction system.

From a survey of the literature and consultation with scientists (at TRC and at

NASA/MSFC localities)possessing strong capabilities in diffusion meteorology, a list

of parameters will be drawn up that are thought to be related to the diffusion process.

This list will include variables obtainable from both routine and special observations.

The predictability obtained from statistical prediction experiments will be used

to establish the first estimate of the relative predictability of the various parameters

considered. Interrelationships between the various prediction errors will be estab-

lished so that an analysis of the impact of prediction errors on a multi-parameter
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diffusion model may be analyzed.

The predictability study will yield prediction equations for input to the present

operational diffusion model.

As a control, results obtained from the predictability experiments will be com-

pared with those obtained from subjective methods, as well as with those of physical

prediction models.

Task III.2 Prediction of the Development or Persistence of Low-level

Temperature Inversions

The objective is to develop a technique to predict categories of low-level temper-

ature profiles for the three NASA/MSFC test and launch-site locations.

The occurrence of marked stability in the planetary boundary layer creates

atmospheric conditions that are often very unfavorable for the dispersion of sound and

the diffusion of toxic vapors. The frequency of serious problems is clearly a function

of a particular location (local effects), time of day, season of year, and synoptic situa-

tion.

In this forecast problem (as in many others), there are numerous instances when

a highly reliable forecast can be made. For example, during daylight hours after the

passage of a rapidly moving strong cold front, relatively unstable conditions can be

expected. On the other hand, at night under conditions of very light wind speed and

strong radiation cooling, very stable lapse rates are found in layers immediately

adjacent to the surface.

There are, of course, many situations where the forecasting problem is much

more difficult. For this reason, a two-step approach is proposed. The first step con-

sists of asking and answering a series of questions (within a decision-tree framework)

that will account for those cases (situations) where highly reliable prediction state-

ments can be made from current data. The remaining cases will be dealt with statisti-

cally by using the REEP technique [26] to derive equations that yield the probability

of occurrence of categories of sounding lapse rate. In the formulation of operationally

significant categories, previous work accomplished under this contract and by other

investigators [12] will be utilized. The decision-tree--REEP approach has been used

successfully in a similar manner to diagnose upper-level humidity from surface-

synoptic stationdata [2,3].
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In the development of the decision-tree and REEP prediction relationships, the

following types of predictors will be considered:

(a) local climatology

(b) season of year

(c) time of day, both of initial-state data and of valid forecast time

(d) synoptic situations

(e) surface data and low-level temperature profile.

An extensive amount of research has been accomplished by Eastern Air Line

personnel in solving various forecasting problems in the southeastern U.S. Techniques

developed for the prediction of such phenomena as fog and stratus, as reported by

George [13], may have application {with modification) to the inversion prediction prob-

lem. Where possible, use will be made of this and other previous research, particu-

larly in the decision-tree phase of the technique development.

Items (a)--(c) above reflect the sensitivity of temperature inversion occurrence

to local and adjacent terrain and to diurnal and seasonal variations. However, it is

well-known that, given the suitable atmospheric conditions [Items (d) and (e)], inver-

sions may develop or persist almost regardless of location, time of day, or season of

year. Whether a partially or wholly separate set of relationships should be developed

for each of the three NASA/MSFC sites would be determined from a detailed examina-

tion and analysis of the data.
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APPENDIX A. DESCRIPTION OF WINDS-ALOFT FORECAST PROCEDURE AND

INHERENT ERRORS [11

A.I. Technique

Forecasts are obtained by using the information that is routinely available from

NMC's 3-level baroclinic model. This model generates forecasts (out to 36 hours)

of stream functions (_) (from which winds can be obtained) and D-values (departures

from standard atmospheric height) at three constant pressure surfaces--850, 700, and

500 mb° Regression equations have been developed for interpolating in the vertical

for determining _ and temperature at the levels not directly obtained from the 3-

level model. Because the forecasts are at grid points, a second interpolation is neces-

sary to obtain values at stations.

A.II. Errors

Errors inherent in the numerical FD forecasts are grouped into three main

categories:

(a) Errors due to the computer process--These are basically truncation

errors and result from the necessary use of finite-difference approximations

instead of exact differentials;

(b) Errors associated with the analysis process--Observed data

(which is used for obtaining the analyses, which in turn are used as

initial data for the forecasts) is interpolated from actual station locations

to the surrounding grid points. The "linear interpolation could result in

reduction of resolution" [1];

(c) Errors resulting from the forecast model--The major problem

is that the NMC 3-level baroclinic model tends to underforecast the

amplitude of troughs, especially in winter, and this is responsible for most

of the errors in the relatively data-dense U.S.

Additional sources of error are:

(a) the vertical interpolations and extrapolations that are neces-

sary to obtain values of wind and temperature at the FD levels from the

3-level model. In performing these interpolations and extrapola-

tions, a "severe assumption of essentially linear distribution of the
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stream function and D-values,, [1] (from which the winds and tempera-

tures are derived) is imposed;

(b) the development, in winter, of large errors in temperature

from the downward extrapolation of temperatures from 800 mb, because

"the regression equations do not account for the anomolous tempera-

ture curves with sharp inversions that occur" [1];

(c) interpolation to the station of grid-point values of temperature

and u and v components of the wind results in reduction of resolution.
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TABLE B-1
ROOT-MEAN-SQUAREERRORSFOR12- AND 24-hr FORECASTSOF WIND

FORJACKSONVILLE, FLORIDA*
(50 cases; 12 Z April 15--12 Z April 30, 1965)

Forecast
length
(hr)

12

24

Level
(m)

914

1524

3281

Observed
speed

(msec -1)

7.7

7.7

8.1

Forecast Vector
speed wind

(m sec-1) (m sec-1)

5.0

5.5

7.7

5.0

4.5

3.5

rms error
Wind
dir.
(deg.)

30

30

30

4268

6562

8086

914

1524

3281

4268

6562

8086

13.0

16°5

20.0

7.7

6.6

9.0

13.5

16.0

19.0

12.0

15.5

21.0

4.5

5.0

8.1

11.5

14.5

19.0

4.5

5.0

7.0

6.1

5.0

5.0

5.6

6.1

5.6

20

20

10

40

50

30

30

20

10

Wind

speed

(m sec -1)

-2

-2

-0

-0.5

-0

+0

-3.0

-1.0

-0.5

-2.0

1.0

-0

*Nearest RAOB station to Cape Kennedy for which verification statistics

were available.
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TABLE B-2
ROOT-MEAN-SQUAREERRORSFOR 12- AND 24-hr FORECASTS

OF WIND FORBURRWOOD,LOUISIANA*
(50 cases; 12 Z April 5--12 Z April 30, 1965)

Forecast
length
(hr)

12

24

Level

(m)

914

1524

3281

4268

6562

8086

Observed

speed

(msec -I)

8.1

7.2

11.0

14.5

19.5

23.0

Forecast

speed
(m sec -I)

6.1

6.6

11.0

15.0

19.0

23.0

Vector

wind

(m sec -I)

4.5

4.5

4.5

4.5

4.0

5.0

rms ¢rr0
Wind

dir.

(deg.)

40

30

10

10

i0

i0

914

1524

3281

4268

6562

8086

9.0

7.7

10.0

12.0

16.0

21.0

6.1

6.6

9.5

13.0

16.5

21.5

7.2

6.1

5.0

4.5

5.0

5.5

50

50

30

20

20

10

Wind

speed

(m sec -1)

-2

-0

-0

+0.5

-0

+0

-2

-i

-0

+i

+0

+0

*Nearest RAOB station to Picayune, Mississippi for which verifications were

available.

/
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TABLE B-3
ROOT-MEAN-SQUAREERRORSFOR 12- AND 24-hr FORECASTS

OF WIND FORNASHVILLE, TENNESSEE*
(50cases; 12 Z April 5--12 Z April 30, 1965)

Forecast

length

(hr)

12

24

Level

(m)

914

1524

3281

4268

6562

8086

914

1524

3281

4268

6562

8086

Observed

speed

(m sec -1)

9.5

10.5

15.0

19.5

23.0

• 26.0

12.0

12.5

14.0

17.5

23.5

28.0

Forecast

speed

(m sec -1)

10.0

11.5

14.5

18.5

22.5

26.0

10.0

11.5

14.5

17.5

21.0

24.5

Vector

wind

(msec -1)

5.5

5.0

8.5

7.7

6.1

7.1

6.6

6.6

7.2

6.6

8.2

9.5

rms error
Wind

dir.

(deg.)

20

20

20

10

10

10

40

20

20

20

10

10

Wind

speed

(m see -1)

+0.5

+0.5

-0

-1.0

-0

+0

-2

-1

+0.5

-0

1.5

-3.0

*Nearest RAOB station to Huntsville for which verification statistics were

available.
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TABLE B-4

ROOT-MEAN-SQUARE ERRORS FOR 12-hr FORECASTS

OF TEMPERATURE AND WIND*

(60 cases)

Station

Nashville

Miami

Level

(m)

914

1524

2134

3281

4805

6562

8086

914

1524

2134

3281

4805

6562

8086

U

(m sec -1)

4.5

3.4

3.2

3.2

3.4

4.9

4.7

V

(m sec -1)

6.2

4.4

3.8

4.1

4.2

5.5

4.9

V

(m sec -1)

7.4

5.6

5.0

5.2

5.4

7.3

6.2

Average

observed

speed

(m see -1)

9.8

8.8

9.4

9.0

10.7

12.0

14.2

3.2

3.6

3.3

3.3

3.9

3.8

5.8

5.1

4.0

4.0

3.5

3.9

4.6

5.1

5.1

5.4

5.0

4.9

5.5

6.0

7.7

8.7

8.0

7.3

7.7

7.0

7.0

8.6

T

(°C)

1.5

1.7

1.5

1.7

2.3

I

1.5

1.6

1.2

1.2

1.4

*u--west-east component of wind

v--south-north component of wind
"_--vector wind

T--temperature
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APPENDIX C. SIMPLIFIED ACOUSTIC-RAY TRACING MODEL AS AID IN

CATEGORIZING METEOROLOGICAL PROFILES WITH REGARD

TO SOUND PROPAGATION

The vertical profile of variables is defined incrementally by parameters of

height (h), sound speed (s) in medium, and velocity (_) of movement of the medium.

Sound speed in the atmosphere is a function of temperature (T) and humidity.

The surface level (h = 0) parameters are designated by subscripts, h 0, _0' So'

T 0. The next level would be hl, etc. The general level is h, etc., and level hm is

defined as level h
n-l"

Symbol definitions:

O Azimuth angle, radians

O* Azimuth angle of velocity shear

Elevation angle, radians

r Radial surface distance from source

V Local maximum speed of sound relative to surface

VO Local speed of sound in direction O, relative to surface

F Relative flux of energy intercepted and returned to surface

I Intensity of return at surface by profile segment

Defined relationships:

= x_ + y_; _ defines the direction O

V = I_I + s = {x 2 + y2) i/2 + s
m

V = I_ - _01 + {s-so); _ - T 0 defines the direction O*

Vm_, [{xm cos 0*) 2 + {Ym sin 0*) 2]
1/2

= ÷ S
m

dV = Vn - {Vm) O*" so defined for this development

r = 2h cot ¢0; an approximation to range where h is the critical height

for ray ¢0

(V0) O = V O cos (¢0)0; Shell's law for ray with speed V at critical height
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Developed relationships:

q_0 = (25V/Vo)1/2;

F = (_0) n - (Co)m;

SFL = 162 + 10 log F

SPL = 159 + i0 log I

from cosine expansion and definitions; if V

negative, ¢0 does not exist

per azimuth angle of one radian; if zero or

negative, does not exist

approximate proportionality_ note ability

to approach infinity

Sound Flux Level, approximate normalization

to source strength of one megawatt; does not

exist if F does not exist

Sound Pressure Level, approximate normalization

to source strength of one megawatt; distances

and heights in meters

The interval table describing the model should contain the following:

h, W/S, W/D, T*, s, x, y, V, V, @*, VO, , dV, ¢0' r, SFL, SPL.

Of these, the following should be output:

h, s, x, y, _0' r, SFL, SPL.
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APPENDIX E. CONSTANT PRESSURE PROFILE FORECAST PROCEDURE

(1000--10 mb)

E.I Procedure for Generating 24-hr Forecast Profiles

Because there is more 24-hr prognostic constant-pressure-surface information

available than at any other forecast time, the 24-hr forecast profiles were generated

first. Wind speeds were computed using the geostrophic wind equation, which requires

values of height at four points surrounding a station as input.

A program was written for the IBM 1620 computer which computes the heights,

temperatures, and geostrophic winds for twelve constant-pressure surfaces for fore-

cast periods of 12, 24, and 36 hrs for a selected station. The twelve constant-pressure

surfaces are 1000, 850, 700, 500, 300, 250, 200, 150, 100, 50, 30, and 10 rob. In all

forecasts, the 1000-rob height was determined from the surface-pressure analysis

chart, surface-pressure prognostic chart, or from actual observed data for initial

time, if available.

"Past" data fields of height and temperature for all experiments were read and

tabulated for selected points from the set of twelve analysis charts for the initial or

base time of the prediction procedure. Using the 24-hr NMC prognostic charts, values

of height were read and tabulated for a set of corresponding points to obtain the height

information necessary for the regression equations. Values of temperature at the base

level are required input for the vertical extrapolation equations; the NMC prognostic

charts do not include temperature fields. A simple trajectory method was used to

obtain the forecast temperatures at the location of interest and at selected points.

This method uses the initial and 24-hr forecast wind fields, and the initial tempera-

ture fields, to compute a forecast temperature field for the 1000-, 850-, 700-, and

500-mb pressure levels. The 24-hr, 300-, and 200-mb forecast temperatures for

Experiment 1, obtained from Standard Atmospheric Tables using the forecast 500--

300-mb thickness, and the computed 500-rob temperature were used to obtain a mean

temperature for the layer. The 300-mb temperature was determined from the mean

temperature and the 500-mb temperature. This procedure was repeated for 200-mb

temperatures. TRC regression equations were used to compute temperature fore-

casts for 300 and 200 mb in Experiment 2.
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Using the aboveinformation as input data, the 24-hr forecasts of heights and

temperatures are computedfor the 250-, 150-, 100-, 50-, 30-, and 10-mb levels for

Nashville and the four surrounding grid points. Forecast winds are computed from the

height values.

E.II Procedure for Generating 12-hr Forecast Profiles

The 12-hr forecast of height, temperature, and wind speed was obtained by linear

interpolation between the initial-time data and the 24-hr forecast values of height,

temperature, and wind speed (except for the 500-mb level, where geostrophic winds

were computed by the program from values of height taken from the 12-hr, 500-rob

prognostic charts).

E.III Procedure for Generating 36-hr Forecasts

To obtain the 36-hr forecast values of height and temperature, all computed

values of height and temperature for the 24-hr forecast are considered as "past" data;

the "present" data fields'(required by the equations) are the NMC 36-hr prognostic

charts.

The procedure for reading and tabulating height values from the charts is the

same as described for the 24-hr prognoses. The 36-hr temperature field forecasts

are obtained using the trajectory method for 700 and 500 mb.

In generating the 36-hr forecast, there is no 850-rob, 36-hr prognostic chart

available for height and temperature information. To obtain 850-rob data, the follow-

ing procedure was followed:

(a) The 36-hr sea-level pressure forecast was converted to a

1000-mb forecast by subtracting the 500-mb forecast from the 1000--

500-rob thickness forecast.

(b) The 1000-mb temperature was computed from the 1000--700-mb

thickness and mean temperature, and the 700-mb teml_erature.

(c) The 850-mb temperature was determined from the 1000--700-mb

lapse-rate curve using the 1000- and 700-mb temperatures.

(d) A mean temperature was computed for the 850--700-mb layer,

and was used to arrive at an 850--700-mb thickness.
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(e) The 700-rob heights were subtracted from the 850--700-mb

thickness to obtain the forecast of 850-rob heights.

Height and temperature data are then complete for the 36-hr forecast for the

1000-, 850-, 700-, 500-, and 300-rob levels, and are the input to the program which

uses TRC regression equations to compute the 250-, 200-, 150-, 100-, 50-, 30-, and

10-rob heights and temperatures. Wind forecasts are generated using the heights.
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